Fast and Compact Oracles for Approximate Distances in Planar Graphs
نویسندگان
چکیده
We present an experimental evaluation of an approximate distance oracle recently suggested by Thorup [1] for undirected planar graphs. The oracle uses the existence of graph separators for planar graphs, discovered by Lipton and Tarjan [2], in order to divide the graph into smaller subgraphs. For a planar graph with n nodes, the algorithmic variant considered uses O(n(log n)/ ) preprocessing time and O(n(log n)/ ) space to answer factor (1 + ) distance queries in O((log n)/ ) time. By performing experiments on randomly generated planar graphs and on planar graphs derived from real world road networks, we investigate some key characteristics of the oracle, such as preprocessing time, query time, precision, and characteristics related to the underlying data structure, including space consumption. For graphs with one million nodes, the average query time is less than 20μs.
منابع مشابه
More Compact Oracles for Approximate Distances in Undirected Planar Graphs
Distance oracles are data structures that provide fast (possibly approximate) answers to shortest-path and distance queries in graphs. The tradeoff between the space requirements and the query time of distance oracles is of particular interest and the main focus of this paper. Unless stated otherwise, we assume all graphs to be planar and undirected. In FOCS 2001 (J. ACM 2004), Thorup introduce...
متن کاملMore Compact Oracles for Approximate Distances in Planar Graphs
Distance oracles are data structures that provide fast (possibly approximate) answers to shortestpath and distance queries in graphs. The tradeoff between the space requirements and the query time of distance oracles is of particular interest and the main focus of this paper. In FOCS‘01, Thorup introduced approximate distance oracles for planar graphs. He proved that, for any > 0 and for any pl...
متن کاملApproximate Distance Oracles for Planar Graphs with Improved Query Time-Space Tradeoff
We consider approximate distance oracles for edge-weighted n-vertex undirected planar graphs. Given fixed ǫ > 0, we present a (1 + ǫ)-approximate distance oracle with O(n(log logn)) space and O((log logn)) query time. This improves the previous best product of query time and space of the oracles of Thorup (FOCS 2001, J. ACM 2004) and Klein (SODA 2002) from O(n log n) to O(n(log log n)).
متن کاملCompact and Fast Sensitivity Oracles for Single-Source Distances
Let s denote a distinguished source vertex of a non-negatively real weighted and undirected graph G with n vertices and m edges. In this paper we present two efficient single-source approximatedistance sensitivity oracles, namely compact data structures which are able to quickly report an approximate (by a multiplicative stretch factor) distance from s to any node of G following the failure of ...
متن کاملFaster Approximate Distance Queries and Compact Routing in Sparse Graphs
A distance oracle is a compact representation of the shortest distance matrix of a graph. It can be queried to retrieve approximate distances and corresponding paths between any pair of vertices. A lower bound, due to Thorup and Zwick, shows that a distance oracle that returns paths of worst-case stretch (2k − 1) must require space Ω(n) for graphs over n nodes. The hard cases that enforce this ...
متن کامل